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ABSTRACT 

U.S. Government agencies and major vendors are actively 

attempting to secure critical infrastructure networks, but 

those efforts depend on patching unsecure, commodity 

systems, installing add-on security appliances, and 

applying other industry “best practices” that are 

ineffective against new attacks and software subversion. 

This has unfortunately led to the conclusion that it is 

impossible to secure critical infrastructure networks and 

even that a completely new, “alternative” Internet is 

needed. These conclusions disregard known and proven 

techniques for building secure, high-assurance, trusted 

systems – techniques developed as a result of years of 

research and engineering experience and systematically 

codified in the Trusted Computer System Evaluation 

Criteria (TCSEC) and related documents. Those 

techniques have not since been improved upon or 

adequately replaced, not even by the more recent 

Common Criteria for Information Technology Security 

Evaluation. In this paper, we sketch how the trusted 

systems technology codified in the TCSEC can be applied 

today to create a secure infrastructure network. 
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1. INTRODUCTION 
Growing awareness that terrorists or other adversaries 

could harm the U.S. through cyber attacks on national 

infrastructure systems has resulted in increased attention 

paid to protecting those systems. The recent and widely 

reported Stuxnet worm demonstrated that those concerns 

are well-founded [13].  

Suggested approaches for securing critical infrastructure 

from cyber attack often focus on applying information 

technology (IT) industry “best practices” [14]. Traditional 

IT security, however, may not always be a good fit for 

infrastructure security. Patching and frequent updates, for 

example, a staple of IT security, is difficult and risky in 

infrastructure systems [6].  

Moreover, traditional IT security practices are basically an 

arms race that can’t be won, because attackers can find 

unknown flaws in low-assurance systems and develop 

attacks for them faster than defenders can find and patch 

them [21]. Poor software development and distribution 

practices, furthermore, create the opportunity to exploit    

artifices previously put in place through software 

subversion [3]. Stuxnet, for example, took advantage of 

known but unpatched flaws and “zero-day”, previously 

unknown flaws in Windows for which no patches yet 

existed in order to subvert the operating system [12]. 

Traditional IT security best practices alone are 

insufficiently effective for protecting critical systems 

when the underlying systems themselves were neither 

designed, engineered, nor evaluated to be secure. The 

Stuxnet attack is illustrative in that it happened years after 

other successful attacks on Windows systems used in 

infrastructure [18] [16], demonstrating the enduring 

vulnerability of the Windows platform. Yet, Windows and 

other low-assurance alternatives, like Linux, continue to 

be used in critical infrastructure systems.  

Recognizing this problem, the U.S. Department of 

Homeland Security has created a “Software Assurance 

Program” to promote the development of high-assurance 

software for infrastructure [11]. The standards and 

practices described, however, are neither mandated nor 

part of a formal development and evaluation process. 

Without a formal development and evaluation process, 

there can be little assurance about the correctness of a 

system and its software. Furthermore, if software 

developed using such a “software assurance program” is 

then run on a low-assurance platform like Windows or 

Linux, the software provides no meaningful assurance 

whatsoever, particularly in the face of (even moderately 

determined) adversaries likely to employ subversion as 

their mode of attack. 

At the same time, the U.S. Department of Energy has 

created the Open PCS (process control system) Security 

Architecture for Interoperable Design (OPSAID) and the 

Lemnos Interoperable Security programs. The goal of 

OPSAID is to help vendors build add-on security devices 

for existing infrastructure [9]. The Lemnos program is 

intended to create standard metrics for describing the 

functions of network security devices and for evaluating 

their performance [10]. Both programs, however, 

represent an ad hoc, piecemeal approach to improving the 

security of critical infrastructure rather than a well 
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thought-out, high-assurance solution. And the tools 

developed under these programs are themselves almost 

certain to be built on low-assurance platforms, thereby 

increasing rather than decreasing the domain of 

vulnerabilities within critical infrastructure networks. 

At the other end of the protection spectrum is a recent 

proposal by an assistant director of the FBI to develop an 

entirely new, separate, “secure alternative” Internet [17]. 

The expressed justification is that no system will ever be 

secure enough to defend against new attacks. The 

proposed solution is to set up another Internet in which 

access controls and monitoring would be strict, making it 

the analog of a “gated community”. Leaving aside the 

likelihood that the “secure alternative” Internet would 

inherit many of the flaws and vulnerabilities of the 

existing Internet, the justification for this solution shares 

with the OPSAID and Lemnos programs the assumption 

that component systems are and always will be 

unsecurable, and that they must be tightly wrapped with 

layers of compensating controls to protect them. 

Many years of science and engineering experience, 

however, have shown that we can build highly secure 

systems [4]. The techniques developed were 

systematically codified in the U.S. National Security 

Agency’s “Trusted Computer System Evaluation Criteria” 

(TCSEC, also known as the “Orange Book”) [8], and the 

potential to apply these techniques was largely carried 

forward in the more recent “Common Criteria for 

Information Technology Security Evaluation” (CC) [7]. A 

rigorous method of composing high-assurance networks 

out of high-assurance components was presented in the 

“Trusted Network Interpretation” (TNI, also known as the 

“Red Book”) of the TCSEC [22]. 

An infrastructure composed of verifiable, high-assurance 

system components to enforce critical policy components, 

instead of low-assurance Windows and Linux systems, 

would be much less vulnerable to attacks – known or 

unknown. The composition of high-assurance components 

would provide the necessary assurance for a critical 

infrastructure network as a whole. This approach offers 

other advantages, as well: 

• Unlike the ad hoc OPSAID/Lemnos “add-on” 

approach, a composed, high-assurance network 

offers a well thought-out and systematically 

applicable approach for securing infrastructure. 

• Unlike the alternative Internet approach, which 

requires all parts to be working before the whole 

can work (a.k.a. the “Big Bang”), this 

compositional approach can be incrementally 

added into existing infrastructure networks and 

provide a high-assurance layer on which lower-

assurance components could be used. 

In this paper we present an approach to creating high-

assurance critical infrastructure networks through 

applying the science of knowing how to build high-

assurance components and how to compose them, 

building on the verifiable trusted systems technology that 

was originally codified in the TCSEC and TNI. 

2. TCSEC/TNI Verifiable Protection 
Our approach here is based on applying the verifiable 

protection technology codified in the TCSEC and TNI, 

not the CC. The CC together with an appropriate 

protection profile could potentially provide the necessary 

criteria and evaluation framework. Currently, however, 

the CC has neither an analog to the TNI to provide 

systematic guidance for composing a secure network of 

high-assurance systems, nor a published protection profile 

equivalent to the TCSEC’s Class A1 level that would 

permit application of the TNI to compose high-assurance 

components evaluated under the CC.1 

The TNI interprets the TCSEC in several ways. For one 

thing, while the TCSEC emphasizes secrecy policies and 

controlling the ability of users to read information, the 

TNI points out that the TCSEC definition of policy also 

encompasses integrity policies and controlling the ability 

of users to modify information. We presume in this paper 

that the chief concern when securing critical infrastructure 

is protecting it from tampering – i.e., an integrity policy. 

The TNI’s main focus is to interpret the TCSEC, without 

adding any new requirements or criteria, to explain how 

the TCSEC’s requirements and criteria are directly 

applicable to trusted networks, using the concept of a 

partitioned trusted computing base (TCB). A TCB is “the 

totality of protection mechanisms within a computer 

system – including hardware, firmware, and software – the 

combination of which is responsible for enforcing a 

security policy” [8]. The TNI interprets the TCB concept 

for a Network TCB (NTCB) that is composed of TCB 

components [22]. 

A key element of the TNI (in particular for its “Class A1”) 

is that an NTCB can be shown to have high-assurance 

with respect to a network security policy if it can be 

shown to be a sound composition of trusted elements. 

Thus, the network architecture must provide “a clean 

decomposition of an overall network security policy into 

policies for the individual components” [22]. The 

individual components can be separately evaluated and 

their composition shown to satisfy the NTCB policy. 

                                                           
1 Readers interested in learning about other ways that the CC 

does not carry forward some of the lessons of the TCSEC and 

its “rainbow series” of guidelines and interpretations are 

directed to [5], [20]. 
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Because the NTCB is a network of secure components, it 

is axiomatic that communications channels between the 

components must implement a trusted network service that 

preserves the security of the information they carry, 

including maintaining the integrity of sensitivity labels, 

user identifiers and clearances, and referenced object 

identifiers. The formal top level specification of an NTCB 

must include representations of the trusted network 

service specifications [22]. 

3. Example Applications 
We present here two examples of how TCSEC/TNI 

concepts (whether articulated by the TSCEC per se, by an 

equivalent CC protection profile, or by some other 

criteria) can be applied to create a secure critical 

infrastructure network:  

1. To create a secure infrastructure communications 

system that provides high-assurance, high-

integrity communication. 

2. To create secure behavior for applications 

through partitioning functions and constraining 

them using the TCB’s mandatory controls. 

For specificity and concreteness, we use as our base 

system in both examples the commercial product known 

as the Gemini Secure Operating System (GEMSOS). The 

U.S. National Security Agency (NSA) previously 

evaluated the GEMSOS security kernel and ratings 

maintenance phase (RAMP) at Class A1 as part of the 

Gemini Trusted Network Processor (GTNP) [15]. 

Sensitivity labels in GEMSOS include both secrecy and 

integrity components. GEMSOS was developed as a high-

assurance, real-time operating system and is commercially 

available today as an OEM product.  

3.1 Secure Infrastructure Communications 
In the first example, subversion-resistant guards built 

using GEMSOS (called “GemSeal” guards [1]) sit on the 

network in front of each existing component (controllers 

and edge clients). The guards cryptographically seal 

packets sent between controllers and edge clients with a 

high-integrity label for their source. The guards forward 

each labeled packet across an untrusted network to a 

guard at the destination. Destination guards validate the 

data and label of each packet against the destination label 

before releasing it. Unlabeled or altered packets cannot 

enter the destination because they will not have a crypto 

seal that binds a label to a matching destination label.  

This architecture is shown in figure 1, where “high-

integrity packets” are packets that are part of legitimate 

communication between “high-integrity” infrastructure 

components, while “low-integrity” packets are injected 

packets that are not legitimate communication.  

The TCSEC requires that “Sensitivity labels shall 

accurately represent security levels of the specific … 

objects with which they are associated. When exported by 

the TCB, sensitivity labels shall accurately and 

unambiguously represent the internal labels and shall be 

associated with the information being exported [8].” 

GEMSOS uses crypto seals internal to its TCB to protect 

the label and data integrity of non-volatile storage. 

GemSeal applies this same crypto seal concept to network 

packets forwarded by guards to ensure that packet data is 

not altered and that the source sensitivity label is 

authentic. 

The seal is a Message Authentication Code (MAC) 

created by using the Cipher-Block-Chaining (CBC) mode 

of a symmetric encryption operation. Packet contents and 

 

Figure 1 - GemSeal Guard Concept 
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the canonical representation of the source network 

sensitivity level are included in the CBC computation of 

the seal. The seal is the final encryption block of the CBC-

mode encryption of the packet source-network sensitivity 

label (canonical representation) and contents of the 

packet, using a packet-specific initialization vector (IV) 

and the configured sensitivity level secret key. 

The transmitted packet includes the forwarded packet as 

well as the seal. The label need not be transmitted as part 

of the packet, but is established for each security 

association (network-to-network connection) between 

GemSeal guards. 

The GemSeal design makes substantial use of previously 

evaluated security services provided by the GEMSOS 

security kernel to minimize the amount of new trusted 

code (to several hundred lines). GemSeal accesses 

previously evaluated GEMSOS security services by way 

of published and stable APIs. The vast majority of 

GemSeal application code (including the network protocol 

stack) is untrusted; only two new security services need be 

trusted – “Seal Packet” and “Release Seal-Validated 

Packet”. The previously evaluated GEMSOS protection 

ring mechanism protects these trusted functions from 

applications. 

NSA deployed the GEMSOS kernel for key management 

and distribution in their Class A1 BLACKER project to 

implement host-to-host secure communications across the 

Defense Data Network [23], an application with 

significant similarities to the GemSeal guard concept. 

Like critical infrastructure networks, the operationally 

deployed BLACKER system required protection from 

particularly determined adversaries, so a major focus of 

the design was to address the threat of software 

subversion. That requirement necessitated the verifiable 

protection of the TCSEC’s Class A1, which substantially 

deals with the threat of subversion of a system’s security 

mechanisms [19]. 

Aesec has developed a proof of concept application of 

GEMSOS to SCADA systems using GemSeal guards to 

connect devices across an Internet-technology network. 

The proof of concept uses a pre-production update of the 

GEMSOS security kernel derived from the Class A1 

GTNP [2]. 

The Department of Energy recognizes that a secure 

communications system is essential for securing critical 

infrastructure systems and, to address this need, has 

specified a VPN tunnel as part of the Lemnos 

Interoperable Security program [10], but the VPN 

appliances are not necessarily high-assurance, nor can 

they be used as the basis for verifiable protection for a 

high-assurance network as defined in the TNI.  

GemSeal guards can be built to satisfy the interoperability 

requirements of the Lemnos program, but an important 

difference is that GemSeal guards are built on a high-

assurance TCB, so the guards themselves are high-

assurance and implement a mandatory security policy. 

Moreover, by implementing a secure communications 

channel, the guards satisfy a requirement under the TNI 

for building an evaluable NTCB. 

The OEM nature of GEMSOS means that builders of 

diverse infrastructure components can maintain Class A1 

security while porting GEMSOS to other, unique IA-32 

hardware devices. The TCSEC (but not the CC [5]) 

supports the ratings maintenance phase (RAMP) process 

to support the reevaluation of evaluated systems when 

they upgrade to new hardware or when selected internal 

modules are changed. It is expensive and time-consuming 

to evaluate a high-assurance system. The RAMP process 

can dramatically reduce the time for a reevaluation to 

months or weeks [20]. GEMSOS could potentially be 

ported, for example, to a newer Intel processor without 

changing the TCB’s formal top level specification or 

changing its modularity definition, which gives a high 

degree of confidence that it would still satisfy the Class 

A1 requirements when undergoing a RAMP. 

3.2 Partitioned, Constrained Applications 
In the second example, shown in figure 2, an 

infrastructure application is built on the GEMSOS TCB 

using a POSIX-compatible API. Instead of a monolithic 

application that mixes low-integrity functions with high-

integrity functions, in this concept, the application is 

partitioned into several parts to take advantage of the 

TCB’s mandatory security controls: 

1. A “Controller” application manages critical 

system functions. Data sent by the controller to 

(and received from) edge components must be 

protected from accidental or deliberate 

contamination by other applications. 

2. A Human-Machine Interface, “HMI” application 

is responsible for sending complete, detailed 

system status data to, and receiving operator 

commands from, a workstation (also running on a 

TCB), possibly over a local area network. This is 

obviously also a high-integrity application, yet it 

must have a different sensitivity label from the 

Controller application. The Controller is focused 

on managing the controlled process (e.g., a 

nuclear power station); presenting data to 

operators and receiving commands is only one 

part of its job. Moreover, because it is 

responding to rapidly changing conditions and 

real-time events, it must mediate, interpret, and 

apply commands sent by human – i.e., slow – 

operators, based on the current situation. The 

HMI may itself be partitioned into two parts: 

input and output. 
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3. A “Status” application collects and distributes 

low-integrity situational awareness information, 

such as system reliability statistics, possibly over 

the Internet, to a central headquarters. The TCB 

securely isolates each application and connection 

so that the untrusted, “summary” data cannot 

contaminate the higher-integrity HMI and 

Controller data. 

In the figure, integrity levels are labeled I1 through I4, 

where I4>I3>I2>I1. Human input (for example, to 

shutdown the system in an emergency situation) has the 

highest integrity level. Communication between the 

controller and the edge components has the next highest 

integrity level. Human-readable output, based on 

information from the controller, has a lower level 

integrity, while status information has the lowest integrity 

level. 

The implementation of the partitioned application on the 

GEMSOS TCB is depicted in figure 3. The different 

layers shown in the figure represent the GEMSOS 

protection ring mechanism. Code in lower, more trusted 

rings, cannot be bypassed by, and are protected from, 

untrusted but more feature-rich applications. The vertical 

“silos” denoted by the dotted lines represent security 

“domains” differentiated by mandatory security secrecy 

and integrity labels.  

Each silo in figure 3 represents a different sensitivity 

level. The applications in each silo communicate with 

applications in other silos and with the outside world 

through GemSeal. This architecture is a fundamentally 

new approach that is not found in any of the widely-

discussed proposed or deployed “best practice” SCADA 

implementations, none of which have the high-assurance 

enforcement of separation and sharing policies for both 

confidentiality and integrity afforded by technology that 

satisfies Class A1 requirements. 

The mandatory policies implemented by the GEMSOS 

TCB support the TNI requirement that every component 

contains a component reference monitor that enforces part 

of the network access control policy. Combined with the 

secure communications implemented by GemSeal, an 

infrastructure network built using these components could 

satisfy a Class A1 evaluation under the TCSEC/TNI (or 

equivalent criteria). 

4. CONCLUSION 
U.S. Government agencies and their vendors are actively 

attempting to secure critical infrastructure networks. 

Surveying the futility of current efforts to secure networks 

using unsecure, commodity operating systems, add-on 

security appliances, and other industry “best practices”, 

they have seemingly despaired of ever being able to 

adequately secure those networks, leading to the 

conclusion that threats will always outpace the ability of 

defenders to secure the networks.  

But this conclusion reflects a needless rush to judgment. It 

ignores known techniques for developing secure, high-

assurance systems – techniques created after years of 

research and engineering experience and codified in the 

TCSEC and related documents – that demonstrate that it is 

possible to build systems that verifiably protect against 

unknown attacks, including subversion. 

In this paper, we’ve sketched how the TCSEC and TNI 

can be applied to create a secure infrastructure network. 

 

 

Figure 2 - Partitioned Application 
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We are not advocating for the TCSEC and TNI, per se, 

but for applying the science and technology of knowing 

how to build secure components and how to compose 

them that the TCSEC/TNI encapsulate. In this effort, for 

example, one could potentially also use the CC with a 

protection profile equivalent to the TCSEC/TNI. 

Above all, we are not proposing in this paper a solution to 

the political problem of who will actually run and manage 

the evaluation process. 
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