
1

COMPOSING A HIGH-ASSURANCE

INFRASTRUCTURE OUT OF TCB COMPONENTS

Mark R. Heckman
AESEC Global Services, Inc.
mark.heckman@aesec.com

Roger R. Schell
AESEC Global Services, Inc.

roger.schell@aesec.com

Edwards E. Reed
AESEC Global Services, Inc.

ed.reed@aesec.com

ABSTRACT

U.S. Government agencies and major vendors are actively

attempting to secure critical infrastructure networks, but

those efforts depend on patching unsecure, commodity

systems, installing add-on security appliances, and

applying other industry “best practices” that are

ineffective against new attacks and software subversion.

This has unfortunately led to the conclusion that it is

impossible to secure critical infrastructure networks and

even that a completely new, “alternative” Internet is

needed. These conclusions disregard known and proven

techniques for building secure, high-assurance, trusted

systems – techniques developed as a result of years of

research and engineering experience and systematically

codified in the Trusted Computer System Evaluation

Criteria (TCSEC) and related documents. Those

techniques have not since been improved upon or

adequately replaced, not even by the more recent

Common Criteria for Information Technology Security

Evaluation. In this paper, we sketch how the trusted

systems technology codified in the TCSEC can be applied

today to create a secure infrastructure network.

Keywords

Infrastructure Protection, Trusted Computing Base, TCB,

GEMSOS, GemSeal, Security Kernel, High-assurance,

Class A1, TCSEC, TNI, Crypto-sealing. Common

Criteria, Software subversion

1. INTRODUCTION
Growing awareness that terrorists or other adversaries

could harm the U.S. through cyber attacks on national

infrastructure systems has resulted in increased attention

paid to protecting those systems. The recent and widely

reported Stuxnet worm demonstrated that those concerns

are well-founded [13].

Suggested approaches for securing critical infrastructure

from cyber attack often focus on applying information

technology (IT) industry “best practices” [14]. Traditional

IT security, however, may not always be a good fit for

infrastructure security. Patching and frequent updates, for

example, a staple of IT security, is difficult and risky in

infrastructure systems [6].

Moreover, traditional IT security practices are basically an

arms race that can’t be won, because attackers can find

unknown flaws in low-assurance systems and develop

attacks for them faster than defenders can find and patch

them [21]. Poor software development and distribution

practices, furthermore, create the opportunity to exploit

artifices previously put in place through software

subversion [3]. Stuxnet, for example, took advantage of

known but unpatched flaws and “zero-day”, previously

unknown flaws in Windows for which no patches yet

existed in order to subvert the operating system [12].

Traditional IT security best practices alone are

insufficiently effective for protecting critical systems

when the underlying systems themselves were neither

designed, engineered, nor evaluated to be secure. The

Stuxnet attack is illustrative in that it happened years after

other successful attacks on Windows systems used in

infrastructure [18] [16], demonstrating the enduring

vulnerability of the Windows platform. Yet, Windows and

other low-assurance alternatives, like Linux, continue to

be used in critical infrastructure systems.

Recognizing this problem, the U.S. Department of

Homeland Security has created a “Software Assurance

Program” to promote the development of high-assurance

software for infrastructure [11]. The standards and

practices described, however, are neither mandated nor

part of a formal development and evaluation process.

Without a formal development and evaluation process,

there can be little assurance about the correctness of a

system and its software. Furthermore, if software

developed using such a “software assurance program” is

then run on a low-assurance platform like Windows or

Linux, the software provides no meaningful assurance

whatsoever, particularly in the face of (even moderately

determined) adversaries likely to employ subversion as

their mode of attack.

At the same time, the U.S. Department of Energy has

created the Open PCS (process control system) Security

Architecture for Interoperable Design (OPSAID) and the

Lemnos Interoperable Security programs. The goal of

OPSAID is to help vendors build add-on security devices

for existing infrastructure [9]. The Lemnos program is

intended to create standard metrics for describing the

functions of network security devices and for evaluating

their performance [10]. Both programs, however,

represent an ad hoc, piecemeal approach to improving the

security of critical infrastructure rather than a well

Presented at the 5th Annual Layered Assurance Workshop (LAW 2011), Orlando, FL, USA. December, 2011.

Available: http://fm.csl.sri.com/LAW/2011/law2011-paper-heckman.pdf

2

thought-out, high-assurance solution. And the tools

developed under these programs are themselves almost

certain to be built on low-assurance platforms, thereby

increasing rather than decreasing the domain of

vulnerabilities within critical infrastructure networks.

At the other end of the protection spectrum is a recent

proposal by an assistant director of the FBI to develop an

entirely new, separate, “secure alternative” Internet [17].

The expressed justification is that no system will ever be

secure enough to defend against new attacks. The

proposed solution is to set up another Internet in which

access controls and monitoring would be strict, making it

the analog of a “gated community”. Leaving aside the

likelihood that the “secure alternative” Internet would

inherit many of the flaws and vulnerabilities of the

existing Internet, the justification for this solution shares

with the OPSAID and Lemnos programs the assumption

that component systems are and always will be

unsecurable, and that they must be tightly wrapped with

layers of compensating controls to protect them.

Many years of science and engineering experience,

however, have shown that we can build highly secure

systems [4]. The techniques developed were

systematically codified in the U.S. National Security

Agency’s “Trusted Computer System Evaluation Criteria”

(TCSEC, also known as the “Orange Book”) [8], and the

potential to apply these techniques was largely carried

forward in the more recent “Common Criteria for

Information Technology Security Evaluation” (CC) [7]. A

rigorous method of composing high-assurance networks

out of high-assurance components was presented in the

“Trusted Network Interpretation” (TNI, also known as the

“Red Book”) of the TCSEC [22].

An infrastructure composed of verifiable, high-assurance

system components to enforce critical policy components,

instead of low-assurance Windows and Linux systems,

would be much less vulnerable to attacks – known or

unknown. The composition of high-assurance components

would provide the necessary assurance for a critical

infrastructure network as a whole. This approach offers

other advantages, as well:

• Unlike the ad hoc OPSAID/Lemnos “add-on”

approach, a composed, high-assurance network

offers a well thought-out and systematically

applicable approach for securing infrastructure.

• Unlike the alternative Internet approach, which

requires all parts to be working before the whole

can work (a.k.a. the “Big Bang”), this

compositional approach can be incrementally

added into existing infrastructure networks and

provide a high-assurance layer on which lower-

assurance components could be used.

In this paper we present an approach to creating high-

assurance critical infrastructure networks through

applying the science of knowing how to build high-

assurance components and how to compose them,

building on the verifiable trusted systems technology that

was originally codified in the TCSEC and TNI.

2. TCSEC/TNI Verifiable Protection
Our approach here is based on applying the verifiable

protection technology codified in the TCSEC and TNI,

not the CC. The CC together with an appropriate

protection profile could potentially provide the necessary

criteria and evaluation framework. Currently, however,

the CC has neither an analog to the TNI to provide

systematic guidance for composing a secure network of

high-assurance systems, nor a published protection profile

equivalent to the TCSEC’s Class A1 level that would

permit application of the TNI to compose high-assurance

components evaluated under the CC.1

The TNI interprets the TCSEC in several ways. For one

thing, while the TCSEC emphasizes secrecy policies and

controlling the ability of users to read information, the

TNI points out that the TCSEC definition of policy also

encompasses integrity policies and controlling the ability

of users to modify information. We presume in this paper

that the chief concern when securing critical infrastructure

is protecting it from tampering – i.e., an integrity policy.

The TNI’s main focus is to interpret the TCSEC, without

adding any new requirements or criteria, to explain how

the TCSEC’s requirements and criteria are directly

applicable to trusted networks, using the concept of a

partitioned trusted computing base (TCB). A TCB is “the

totality of protection mechanisms within a computer

system – including hardware, firmware, and software – the

combination of which is responsible for enforcing a

security policy” [8]. The TNI interprets the TCB concept

for a Network TCB (NTCB) that is composed of TCB

components [22].

A key element of the TNI (in particular for its “Class A1”)

is that an NTCB can be shown to have high-assurance

with respect to a network security policy if it can be

shown to be a sound composition of trusted elements.

Thus, the network architecture must provide “a clean

decomposition of an overall network security policy into

policies for the individual components” [22]. The

individual components can be separately evaluated and

their composition shown to satisfy the NTCB policy.

1 Readers interested in learning about other ways that the CC

does not carry forward some of the lessons of the TCSEC and

its “rainbow series” of guidelines and interpretations are

directed to [5], [20].

3

Because the NTCB is a network of secure components, it

is axiomatic that communications channels between the

components must implement a trusted network service that

preserves the security of the information they carry,

including maintaining the integrity of sensitivity labels,

user identifiers and clearances, and referenced object

identifiers. The formal top level specification of an NTCB

must include representations of the trusted network

service specifications [22].

3. Example Applications
We present here two examples of how TCSEC/TNI

concepts (whether articulated by the TSCEC per se, by an

equivalent CC protection profile, or by some other

criteria) can be applied to create a secure critical

infrastructure network:

1. To create a secure infrastructure communications

system that provides high-assurance, high-

integrity communication.

2. To create secure behavior for applications

through partitioning functions and constraining

them using the TCB’s mandatory controls.

For specificity and concreteness, we use as our base

system in both examples the commercial product known

as the Gemini Secure Operating System (GEMSOS). The

U.S. National Security Agency (NSA) previously

evaluated the GEMSOS security kernel and ratings

maintenance phase (RAMP) at Class A1 as part of the

Gemini Trusted Network Processor (GTNP) [15].

Sensitivity labels in GEMSOS include both secrecy and

integrity components. GEMSOS was developed as a high-

assurance, real-time operating system and is commercially

available today as an OEM product.

3.1 Secure Infrastructure Communications
In the first example, subversion-resistant guards built

using GEMSOS (called “GemSeal” guards [1]) sit on the

network in front of each existing component (controllers

and edge clients). The guards cryptographically seal

packets sent between controllers and edge clients with a

high-integrity label for their source. The guards forward

each labeled packet across an untrusted network to a

guard at the destination. Destination guards validate the

data and label of each packet against the destination label

before releasing it. Unlabeled or altered packets cannot

enter the destination because they will not have a crypto

seal that binds a label to a matching destination label.

This architecture is shown in figure 1, where “high-

integrity packets” are packets that are part of legitimate

communication between “high-integrity” infrastructure

components, while “low-integrity” packets are injected

packets that are not legitimate communication.

The TCSEC requires that “Sensitivity labels shall

accurately represent security levels of the specific …

objects with which they are associated. When exported by

the TCB, sensitivity labels shall accurately and

unambiguously represent the internal labels and shall be

associated with the information being exported [8].”

GEMSOS uses crypto seals internal to its TCB to protect

the label and data integrity of non-volatile storage.

GemSeal applies this same crypto seal concept to network

packets forwarded by guards to ensure that packet data is

not altered and that the source sensitivity label is

authentic.

The seal is a Message Authentication Code (MAC)

created by using the Cipher-Block-Chaining (CBC) mode

of a symmetric encryption operation. Packet contents and

Figure 1 - GemSeal Guard Concept

4

the canonical representation of the source network

sensitivity level are included in the CBC computation of

the seal. The seal is the final encryption block of the CBC-

mode encryption of the packet source-network sensitivity

label (canonical representation) and contents of the

packet, using a packet-specific initialization vector (IV)

and the configured sensitivity level secret key.

The transmitted packet includes the forwarded packet as

well as the seal. The label need not be transmitted as part

of the packet, but is established for each security

association (network-to-network connection) between

GemSeal guards.

The GemSeal design makes substantial use of previously

evaluated security services provided by the GEMSOS

security kernel to minimize the amount of new trusted

code (to several hundred lines). GemSeal accesses

previously evaluated GEMSOS security services by way

of published and stable APIs. The vast majority of

GemSeal application code (including the network protocol

stack) is untrusted; only two new security services need be

trusted – “Seal Packet” and “Release Seal-Validated

Packet”. The previously evaluated GEMSOS protection

ring mechanism protects these trusted functions from

applications.

NSA deployed the GEMSOS kernel for key management

and distribution in their Class A1 BLACKER project to

implement host-to-host secure communications across the

Defense Data Network [23], an application with

significant similarities to the GemSeal guard concept.

Like critical infrastructure networks, the operationally

deployed BLACKER system required protection from

particularly determined adversaries, so a major focus of

the design was to address the threat of software

subversion. That requirement necessitated the verifiable

protection of the TCSEC’s Class A1, which substantially

deals with the threat of subversion of a system’s security

mechanisms [19].

Aesec has developed a proof of concept application of

GEMSOS to SCADA systems using GemSeal guards to

connect devices across an Internet-technology network.

The proof of concept uses a pre-production update of the

GEMSOS security kernel derived from the Class A1

GTNP [2].

The Department of Energy recognizes that a secure

communications system is essential for securing critical

infrastructure systems and, to address this need, has

specified a VPN tunnel as part of the Lemnos

Interoperable Security program [10], but the VPN

appliances are not necessarily high-assurance, nor can

they be used as the basis for verifiable protection for a

high-assurance network as defined in the TNI.

GemSeal guards can be built to satisfy the interoperability

requirements of the Lemnos program, but an important

difference is that GemSeal guards are built on a high-

assurance TCB, so the guards themselves are high-

assurance and implement a mandatory security policy.

Moreover, by implementing a secure communications

channel, the guards satisfy a requirement under the TNI

for building an evaluable NTCB.

The OEM nature of GEMSOS means that builders of

diverse infrastructure components can maintain Class A1

security while porting GEMSOS to other, unique IA-32

hardware devices. The TCSEC (but not the CC [5])

supports the ratings maintenance phase (RAMP) process

to support the reevaluation of evaluated systems when

they upgrade to new hardware or when selected internal

modules are changed. It is expensive and time-consuming

to evaluate a high-assurance system. The RAMP process

can dramatically reduce the time for a reevaluation to

months or weeks [20]. GEMSOS could potentially be

ported, for example, to a newer Intel processor without

changing the TCB’s formal top level specification or

changing its modularity definition, which gives a high

degree of confidence that it would still satisfy the Class

A1 requirements when undergoing a RAMP.

3.2 Partitioned, Constrained Applications
In the second example, shown in figure 2, an

infrastructure application is built on the GEMSOS TCB

using a POSIX-compatible API. Instead of a monolithic

application that mixes low-integrity functions with high-

integrity functions, in this concept, the application is

partitioned into several parts to take advantage of the

TCB’s mandatory security controls:

1. A “Controller” application manages critical

system functions. Data sent by the controller to

(and received from) edge components must be

protected from accidental or deliberate

contamination by other applications.

2. A Human-Machine Interface, “HMI” application

is responsible for sending complete, detailed

system status data to, and receiving operator

commands from, a workstation (also running on a

TCB), possibly over a local area network. This is

obviously also a high-integrity application, yet it

must have a different sensitivity label from the

Controller application. The Controller is focused

on managing the controlled process (e.g., a

nuclear power station); presenting data to

operators and receiving commands is only one

part of its job. Moreover, because it is

responding to rapidly changing conditions and

real-time events, it must mediate, interpret, and

apply commands sent by human – i.e., slow –

operators, based on the current situation. The

HMI may itself be partitioned into two parts:

input and output.

5

3. A “Status” application collects and distributes

low-integrity situational awareness information,

such as system reliability statistics, possibly over

the Internet, to a central headquarters. The TCB

securely isolates each application and connection

so that the untrusted, “summary” data cannot

contaminate the higher-integrity HMI and

Controller data.

In the figure, integrity levels are labeled I1 through I4,

where I4>I3>I2>I1. Human input (for example, to

shutdown the system in an emergency situation) has the

highest integrity level. Communication between the

controller and the edge components has the next highest

integrity level. Human-readable output, based on

information from the controller, has a lower level

integrity, while status information has the lowest integrity

level.

The implementation of the partitioned application on the

GEMSOS TCB is depicted in figure 3. The different

layers shown in the figure represent the GEMSOS

protection ring mechanism. Code in lower, more trusted

rings, cannot be bypassed by, and are protected from,

untrusted but more feature-rich applications. The vertical

“silos” denoted by the dotted lines represent security

“domains” differentiated by mandatory security secrecy

and integrity labels.

Each silo in figure 3 represents a different sensitivity

level. The applications in each silo communicate with

applications in other silos and with the outside world

through GemSeal. This architecture is a fundamentally

new approach that is not found in any of the widely-

discussed proposed or deployed “best practice” SCADA

implementations, none of which have the high-assurance

enforcement of separation and sharing policies for both

confidentiality and integrity afforded by technology that

satisfies Class A1 requirements.

The mandatory policies implemented by the GEMSOS

TCB support the TNI requirement that every component

contains a component reference monitor that enforces part

of the network access control policy. Combined with the

secure communications implemented by GemSeal, an

infrastructure network built using these components could

satisfy a Class A1 evaluation under the TCSEC/TNI (or

equivalent criteria).

4. CONCLUSION
U.S. Government agencies and their vendors are actively

attempting to secure critical infrastructure networks.

Surveying the futility of current efforts to secure networks

using unsecure, commodity operating systems, add-on

security appliances, and other industry “best practices”,

they have seemingly despaired of ever being able to

adequately secure those networks, leading to the

conclusion that threats will always outpace the ability of

defenders to secure the networks.

But this conclusion reflects a needless rush to judgment. It

ignores known techniques for developing secure, high-

assurance systems – techniques created after years of

research and engineering experience and codified in the

TCSEC and related documents – that demonstrate that it is

possible to build systems that verifiably protect against

unknown attacks, including subversion.

In this paper, we’ve sketched how the TCSEC and TNI

can be applied to create a secure infrastructure network.

Figure 2 - Partitioned Application

6

We are not advocating for the TCSEC and TNI, per se,

but for applying the science and technology of knowing

how to build secure components and how to compose

them that the TCSEC/TNI encapsulate. In this effort, for

example, one could potentially also use the CC with a

protection profile equivalent to the TCSEC/TNI.

Above all, we are not proposing in this paper a solution to

the political problem of who will actually run and manage

the evaluation process.

5. REFERENCES
[1] Aesec Global Services. "GemSeal Guard: High

Assurance MLS." Unpublished white paper, 2007.

[2] Aesec Global Services. "GemSeal Guard: High

Assurance Integrity for SCADA." White paper, 2007.

http://aesec.com/guards/Aesec-GemSeal-SCADA-

Concept-070220.pdf (accessed August 21, 2011)

[3] Anderson, E. A., Irvine, C. E., and Schell, R. R.,

"Subversion as a threat in information warfare," in

Journal of Information Warfare, Volume 3, No.2,

June 2004, pp. 52-65.

[4] Bell, D. E. “Looking back at the Bell-LaPadula

model”. Proceedings of the 21st Annual Computer

Security Applications Conference, December 2005.

[5] Bell, D.E., “Looking Back: Addendum,” Invited

paper at the 22nd Annual Computer Security

Applications Conference, December 2006.

http://selfless-

security.offthisweek.com/presentations/Bell_LBA.pdf

(accessed November 20, 2011)

[6] Cárdenas, A. A., Amin, S., and Shankar, S. "Research

challenges for the security of control systems".

Proceedings of the 3rd Conference on Hot Topics in

Security (HOTSEC'08). Berkeley, CA, USA:

USENIX Association, 2008.

[7] Common Criteria for Information Technology

Security Evaluation, Version 3.1, CCMB-2009-07-

001, July 2009.

http://www.commoncriteriaportal.org/cc/

[8] "Department of Defense Trusted Computer System

Evaluation Criteria”. (Orange Book) 5200.28-STD,

United States National Computer Security Center,

December 1985.

[9] Department of Energy, “Open PCS Security

Architecture for Interoperable Design (OPSAID)”.

http://energy.gov/oe/downloads/open-pcs-security-

architecture-interoperable-design-opsaid (accessed

November 12, 2011).

[10] Department of Energy, “Lemnos Interoperable

Security”.

http://energy.gov/sites/prod/files/oeprod/Documentsa

ndMedia/Lemnos_Interoperable_Security.pdf

(accessed October 5, 2011).

[11] Department of Homeland Security, “Build Security

In: Setting a Higher Standard for Software

Assurance”. https://buildsecurityin.us-

cert.gov/bsi/home.html (accessed September 6,

2011).

[12] Falliere, N., O Murchu, L., and Chien, E.

"W32.Stuxnet Dossier." symantec.com. February

2011.

http://www.symantec.com/content/en/us/enterprise/m

edia/security_response/whitepapers/w32_stuxnet_dos

sier.pdf (accessed August 21, 2011).

[13] McMillan, R. Siemens: Stuxnet worm hit industrial

systems. September 14, 2010.

https://www.computerworld.com/s/article/9185419/Si

emens_Stuxnet_worm_hit_industrial_systems?taxono

myName=Network+Security&taxonomyId=142

(accessed August 30, 2011).

[14] Naedele, M. "Addressing IT Security for Critical

Control Systems." Proceedings, 40th Hawaii

International Conference on Systems Science

(HICSS-40 2007). Waikoloa, Big Island, HI, USA:

IEEE Computer Society, 2007.

[15] National Computer Security Center. "Final

Evaluation Report for the Gemini Trusted Network

Processor." 1995. http://aesec.com/eval/NCSC-FER-

94-008.pdf (accessed August 27, 2011).

[16] Niland, M. Computer Virus Brings Down Train

Signals. August 20, 2003.

Figure 3 – Partitioned Application Implementation

7

http://www.informationweek.com/news/13100807

(accessed August 28, 2011).

[17] Rashid, F. Y. “FBI Official Backs Alternative

Internet to Secure Critical Systems”. eWeek, October

23, 2011. http://www.eweek.com/c/a/Security/FBI-

Official-Backs-Alternative-Internet-to-Secure-

Critical-Systems-620446/ (accessed November 12,

2011)

[18] Roberts, P. F. Zotob, PnP Worms Slam 13

DaimlerChrysler Plants. August 18, 2005.

http://www.eweek.com/c/a/Security/Zotob-PnP-

Worms-Slam-13-DaimlerChrysler-Plants/ (accessed

August 23, 2011).

[19] Schell, R. R., Brinkley, D. L., “Evaluation criteria for

trusted systems”, in Information Security: An

Integrated Collection of Essays, ed. Abrams and

Jajodia and Podell, IEEE Computer Society Press,

Los Alamitos, CA, pp. 137-159, 1995.

[20] Schell, R. R., Reed, E. E. “Computer Security: A

Historical Perspective”. In Encyclopedia of

Quantitative Risk Analysis and Assessment. Melnick,

E. L., Everitt, B. eds. John Wiley, 2008.

[21] Somayaji, Anil. "How to Win an Evolutionary Arms

Race." IEEE Security & Privacy, November-

December 2004: 70-72.

[22] “Trusted Network Interpretation of the Trusted

Computer System Evaluation Criteria”, DoD

5200.28–STD, 31 July 1987, NCSC–TG–005.

[23] Weissman, C. "BLACKER: security for the DDN

examples of A1 security engineering trades."

Proceedings, 1992 IEEE Computer Society

Symposium on Research in Security and Privacy.

Oakland, CA: IEEE, 1992. 286-292.

